SO-CovSel: A NEW METHOD FOR VARIABLE SELECTION IN MULTI-BLOCK DATA

Alessandra Biancolillo 1, Federico Marini 1, Jean-Michel Roger 2

1 University of Rome La Sapienza, Piazzale Aldo Moro 5, I-00185, Rome, Italy,
2 ITAP, Irstea, Montpellier SupAgro, Univ Montpellier, Montpellier, France
Introduction

More and more multi-block data:

- same samples measured by different techniques

A lot of methods for analyzing all the blocks simultaneously

- CCSWA (ComDim), MBPCA, MBPLS, SO-PLS, Statis, ...

But there is a lack of dedicated variable selection methods
The idea

To mix SO-PLS [1] and CovSel [2] because they act similarly

SO-PLS

• Principle: To extract complementary latent variables from each block, successively

• Algorithm:
 1. i=1
 2. Extract k_i PLS latent variables from (X_i, Y)
 3. Orthogonalize each block $> i$ wrt already extracted LV
 4. Orthogonalize Y wrt already extracted LV
 5. i=i+1; GOTO 2
CovSel

- Principle: To extract original variables from one block X which explain the Covariance between X and Y

- Algorithm:
 1. Extract the variable i from $(X, Y) / \text{Max}(\text{cov}^2(X_i, Y))$
 2. Orthogonalize X wrt already extracted X_i
 3. Orthogonalize Y wrt already extracted X_i
 4. GOTO 1

$\text{CovSel} = \text{PLS with loadings as [0 0 \ldots 1 \ldots 0 0 0]}$
SO - CovSel

- Principle: To extract complementary original variables from each block, successively

- Algorithm:
 1. $i=1$
 2. Extract k_i original variables from (X_i, Y) by CovSel
 3. Orthogonalize each block $> i$ wrt already extracted variables
 4. Orthogonalize Y wrt already extracted variables
 5. $i=i+1$; GOTO 2

Under publication in Journal of Chemometrics
SO-PLS vs SO-CovSel

- From two blocks X1 and X2

- Let K1, K2 be the number of (latent) variables to extract from X1, X2

- SO-PLS provides scores $T_1(N \times K_1)$ $T_2(N \times K_2)$, as linear combination of the original variables of X1 and X2

- SO-CovSel provides scores $T_1(N \times K_1)$ $T_2(N \times K_2)$, as subsets of original variables of X1 and X2

- Depending on the Y, the scores of both methods can be inputted into:
 - a linear regression \rightarrow SO-PLS-R & SO-CovSel-R
 - a discriminant analysis \rightarrow SO-PLS-DA & SO-CovSel-DA
First example: Hazelnut origin discrimination

286 Samples

2112 Variables

Overtone region

Combination bands region

1000 Variables

Training Set of 286 samples

Test Set of 90 samples

221 PDO Romana Hazelnut

155 Common Hazelnut

49 Romana PDO

41 Common

2 Classes
Hazelnuts: Results

<table>
<thead>
<tr>
<th>Class</th>
<th>Predicted PDO</th>
<th>Predicted Common</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDO</td>
<td>38</td>
<td>3</td>
</tr>
<tr>
<td>Common</td>
<td>3</td>
<td>46</td>
</tr>
</tbody>
</table>

Latent V = 3, 5

- 6 Misclassified

Selected V = 2, 10

- 5 Misclassified

<table>
<thead>
<tr>
<th>Class</th>
<th>Predicted PDO</th>
<th>Predicted Common</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDO</td>
<td>39</td>
<td>2</td>
</tr>
<tr>
<td>Common</td>
<td>3</td>
<td>46</td>
</tr>
</tbody>
</table>
Hazelnuts: Results

CovSel
X: 2 variables selected
Z: 9 variables selected

VIP
X: 526 variables selected
Z: 210 variables selected
Second example: Polarisation spectroscopy

• Four complementary settings to measure the reflectance according to four polarisation states:
 • none, perpendicular, at 45 degrees, circular

• Measurement of visible spectra of a complete mixture design of:
 • 10 concentrations of Blue Methylene
 • 5 concentrations of pure scattering medium
Second example: Polarisation spectroscopy

DATA:

X1, X2, X3, X4:
4 blocs of 50 spectra x 91 wavelengths

Y: 1 bloc of 50 samples
x 2 concentrations Cabs, Cdif
Second example: Polarisation spectroscopy

RESULTS

<table>
<thead>
<tr>
<th>Method</th>
<th>Cabs</th>
<th>Cdif</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SECV</td>
<td>R²</td>
</tr>
<tr>
<td>PLS on global reflectance</td>
<td>20.7</td>
<td>0.71</td>
</tr>
<tr>
<td>SO-PLS on 4 blocks</td>
<td>13.6</td>
<td>0.88</td>
</tr>
<tr>
<td>#LV = 6, 7, 2, 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO-CovSel on 4 blocks</td>
<td>15.6</td>
<td>0.84</td>
</tr>
<tr>
<td>7, 3, 2, 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO-CovSel on 4 blocks</td>
<td>15.1</td>
<td>0.85</td>
</tr>
<tr>
<td>1, 2, 1, 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cross Validation by blocks of identical Cabs
Second example:

Polarisation spectroscopy

- **Selected variables:**
 - 559 nm on back scattering
 - 666 & 700 nm on perpendicular polarisation
 - 700 nm on 45° polarisation

Should be feasible to build a sensor with 3 wavelengths and 3 polarizers

Possible application: chlorophyll content in vegetation
Third example:
Sensory analysis of chocolates

- 208 chocolates samples belonging to 4 sensory poles

- Measurement of global fingerprints by:
 - NIRS, PTRMS, SPME, 3D-Fluorescence, 8 organic acids by HPLC

- 144 samples for calibration

- 62 samples for validation
Third example:
Sensory analysis of chocolates

1 sample misclassified over 62
Third example: Sensory analysis of chocolates

<table>
<thead>
<tr>
<th>Technique</th>
<th>#Sel</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vis-NIRS</td>
<td>3</td>
<td>408; 598; 1116 nm</td>
</tr>
<tr>
<td>PRTMS</td>
<td>20</td>
<td>41.054; 43.055; 43.068; 44.995; 61.064; 68.055; 68.075; 69.086; 82.984; 85.064; 89.084; 93.041; 101.094; 104.046; 112.150; 114.145; 115.111; 119.068; 125.058; 127.029</td>
</tr>
<tr>
<td>SPME</td>
<td>1</td>
<td>AClacet</td>
</tr>
<tr>
<td>3D-Fluo</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Acids</td>
<td>1</td>
<td>Citric</td>
</tr>
</tbody>
</table>
Conclusion

• SO-CovSel is an adaptation of SO-PLS multi-block PLS
• It is able to select non redundant variables in each block
• The selection is optimal in terms of covariance
• The selection is parsimonious
• SO-CovSel can be used on any type of blocks, for regression or discrimination
Acknowledgements

- Arnaud Ducanchez for the data on polarized spectroscopy
- Agropolis Fondation for supporting the Chaman project on chocolates and Zoé Deuscher and Jean-Luc Le Quéré from the Centre des Sciences du Goût et de l’Alimentation, Dijon, for the PTRMS data