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Peanut in wheat flour

• Peanut allergy is a major health concern: 
• High sensitivity for very small dose (a few mg)
• Allergic population on the rise ? 
• Widely used in the food industry

• Advisory labelling for food allergen are not a 
complete solution for allergic people

• Allergen contamination could be detected using 
imaging technique in raw material as wheat flour

From Oqali, A study on allergens occurance in available transformed products on the French 
marker between 2008 and 2012. (“Etude des allergènes dans les produits transformés
disponibles sur le marché français entre 2008 et 2012,” Paris, 2015.)

*May contain milk, peanut and nuts.
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Peanut and wheat flour in near infrared

• Peanut allergy is associated with proteins
(Ara h 1 -> Ara h 8*)

• Peanut NIR spectral signature is not specific to 
proteins (influence of fatty acids)

• Peanut flour is defatted and show less NIR pattern 
à more difficult to distinguish from wheat

• Peanut flour and wheat flour pure spectra do not 
show clear specific spectral patterns -> challenging 
unmixing problem

Specim SWIR

* Proteins from Arachis hypogaea (peanuts) 

Defatted 
peanut flour

White 
wheat flour
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Subpixel issue

∼250 µm

The camera provides the 
average spectrum of the pixel 
field of view (∼250 µm square).

Particle size < 200 µm

One pixel contains 
several particles

• Each pixel spectrum is a mix of peanut and 
wheat

• Spatial pattern cannot be used as the 
mixture is assumed to be homogeneous

• No spectral data with different 
concentrations of peanut available

• No reference value for individual pixel

Hyperspectral image
One pixel
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Experimental setup
« Background »« Target »

Peanut concentration
20% - 10% - 5% - 2% - 1% - 0.5% - 0.2% - 0.02% 

• Flour mixtures: from 20% down to 0.02% 
(200 ppm) of peanut in wheat

• Mass measurement with 0.01 mg precision

• Manually blended flour mixtures

• 3 replica for each sample andpure samples 
are measured with the camera

• Samples considered to be homogeneous

Specim SWIR

MIXING
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Target correlation approach

!

Hyperspectral image
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Correlation score between each pixel spectrum and the 
mean spectral signature of peanut (target)

r = corr(), +,-./012)
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Target correlation approach

!

Hyperspectral image
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Target correlation approach
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Target correlation approach

• Correlation approach not appropriate
• Subspaces needed to model spectral variability
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Adaptive Matched Subspace Detector (AMSD)

• AMSD is an algorithm used for detection: the output is detected (target) or not detected 
(background)

D. Manolakis, C. Siracusa, and G. Shaw, “Hyperspectral  subpixel target detection using the 
linear mixing model,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 7, pp. 1392–1409, 2001.
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Adaptive Matched Subspace Detector (AMSD)

• AMSD is an algorithm used for detection: the output is detected (target) or not detected 
(background)

• AMSD is used to assess the presence of peanut in each pixel

D. Manolakis, C. Siracusa, and G. Shaw, “Hyperspectral  subpixel target detection using the 
linear mixing model,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 7, pp. 1392–1409, 2001.
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Adaptive Matched Subspace Detector (AMSD)

• AMSD is an algorithm used for detection: the output is detected (target) or not detected 
(background)

• AMSD is used to assess the presence of peanut in each pixel

x = ∑$%&' a$ s$ + r,

Hyperspectral image

I

λ Each pixel is assumed to be a linear combination of endmembers 
(s$) according to some proportions (a$). r holds for the residuals 
of the model.

D. Manolakis, C. Siracusa, and G. Shaw, “Hyperspectral  subpixel target detection using the 
linear mixing model,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 7, pp. 1392–1409, 2001.
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Adaptive Matched Subspace Detector (AMSD)

• AMSD approach is performed in 3 steps: 

1. Construction of the target (S") and the background (S#) subspaces

2. Design of the detector: 
• n stands for the target and background subspace dimensionality
• θ stands for the detection threshold

3. Application on test images
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Adaptive Matched Subspace Detector (AMSD)

• AMSD approach is performed in 3 steps: 

1. Construction of the target (S") and the background (S#) subspaces
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Subspace design

How to obtain the subspaces S" and S# ? 

Pure 
peanut

Pure 
wheat

Hyperspectral images

• Pure peanut flour and pure wheat flour images are 
acquired to measure the sample variability

• S" models the variability of wheat flour

• S# models the variability of peanut flour
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Subspace design
How to obtain the subspaces S" and S# ? 

Pure 
peanut

Pure 
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Hyperspectral images
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Subspace design
How to obtain the subspaces S" and S# ? 
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Adaptive Matched Subspace Detector (AMSD)

• AMSD approach is performed in 3 steps: 

1. Construction of the target (S") and the background (S#) subspaces

2. Design of the detector: 
• n stands for the target and background subspace dimensionality
• θ stands for the detection threshold
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Subspace design
How to choose the subspace dimension n ? 

"#$%&'(
")*+',

n

Norm of residuals

Subspace dimension
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Subspace design
How to choose the subspace dimension n ? 

"#$%&'(
")*+',

n

Norm of residuals

Subspace dimension

• With high n, the variability of 
pure samples is taken into 
account
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Subspace design
How to choose the subspace dimension n ? 

"#$%&'(
")*+',

n

Norm of residuals

Subspace dimension

• With high n, the variability of 
pure samples is taken into 
account

• High n may lead to detector 
overfitting: the measurement 
noise is confused with sample 
variability

• A tradeoff must be found by 
checking the detector 
histograms and detection map

Risk of overfittin
g

Appropriate value for n
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Apply AMSD ratio

!

Hyperspectral images

Decompose ! on "# using Non Negative Least 
Square (NNLS) to find abundance vector  

!
λ

NNLS on "# %&
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Apply AMSD ratio

x

Hyperspectral images

Decompose " on #$ using Non Negative Least 
Square (NNLS) to find abundance vector  
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Apply AMSD ratio

x

Hyperspectral images

Decompose " on #$ using Non Negative Least 
Square (NNLS) to find abundance vector  

"
λ

NNLS on #$ &'

n

&'

#$n

λ

n

= *"

Reconstruct an estimation of " using #$ and &'

+,- = " − *"



25

Apply AMSD ratio

x

Hyperspectral images

Decompose " on #$ using Non Negative Least 
Square (NNLS) to find abundance vector  
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Apply AMSD ratio

x

Hyperspectral images

Decompose " on #$ and #% using Non Negative 
Least Square (NNLS) to find abundance vector  
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Apply AMSD ratio

d " = R%& − R%(
R%(

H0

H1

"
)*+

)*,

• The AMSD gives a metric for the detection which is a relative comparison of 
residuals between both models
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Apply AMSD ratio

d " = R%& − R%(
R%(

H0

H1

"
)*+

)*,

• The AMSD gives a metric for the detection which is a relative comparison of 
residuals between both models

AMSD algorithm (first part)
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Apply AMSD ratio

d " = R%& − R%(
R%(

≶ θ

H0

H1

"
+,-

+,.

• The AMSD gives a metric for the detection which is a relative comparison of 
residuals between both models

AMSD algorithm (complete)

0: no detection

1: detection
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Apply AMSD ratio

d " = R%& − R%(
R%(

≶ θ

H0

H1

"
+,-

+,.

• The AMSD gives a metric for the detection which is a relative comparison of 
residuals between both models

AMSD algorithm (complete)

0: no detection

1: detection

How to choose θ ? 
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Threshold choice (θ)

d # = R&' − R&)
R&)

Pure 
peanut

Pure 
wheat

i

i

j

j

λ

λ

• For pure images, true detection results are known à can be used to find the threshold for the 
detector.

Application of AMSD algorithm 
(first part) on pure image sample
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Threshold choice (θ)

d # = R&' − R&)
R&)

Pure 
peanut

Pure 
wheat

i

i

j

j

λ

λ

Application of AMSD algorithm 
(first part) on pure image sample

• For pure images, true detection results are known à can be used to find the threshold for the 
detector

d #

Pure peanut

Pure wheat
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Threshold choice (θ)

d #

Pure peanut

Pure wheat

θ

P%: detection probability
P'(: false alarm probability
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Threshold choice (θ)

d x

Pure peanut

Pure wheat

θ

max P'
subject to P01 = 0 θ = max(d 56789: )

P': detection probability
P01: false alarm probability
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• The histogram of d depends on the choice of n
• Histograms below show that n = 2 is a better choice than n = 1 because the detection is not optimal on 

reference images

Threshold dependence on subspace dimensionality 

d x

Pure peanut

Pure wheat

Histogram for references with n = 2

d x

Pure wheat

Pure peanut

Histogram for references with n = 1

Overlap !
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Adaptive Matched Subspace Detector (AMSD)

• AMSD approach is performed in 3 steps: 

1. Construction of the target (S") and the background (S#) subspaces

2. Design of the detector: 
• $ stands for the target and background subspace dimensionality
• % stands for the detection threshold

3. Application on test images
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AMSD application on test images
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AMSD application on test images
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AMSD application on test images
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AMSD application on test images – influence of n
10% - n = 1 10% - n = 2 10% - n = 3

• AMSD with n = 2 tends to provide more detected pixels than AMSD with n = 1 (underfitting) 
and n = 3 (overfitting ?) 



41

AMSD application on test images 
20% - ! = 2

10% - ! = 2

5% - ! = 2

Decreasing global 
concentration
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AMSD application on test images 
20% - ! = 2

10% - ! = 2

5% - ! = 2

Decreasing global 
concentration

! = $
! = %
! = &

Detected pixels 
counting
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AMSD application on test images 
20% - ! = 2

10% - ! = 2

5% - ! = 2

Decreasing global 
concentration

! = $
! = %
! = &

n = $ n = % n = &
Pearson 

coefficient 0.901 0.902 0.897

Correlation between the number of detected pixels (%) and 
the global sample concentration

Detected pixels 
counting
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Conclusions and perspectives

• AMSD provides an appropriate metric for subpixel detection with close spectral endmembers

• Detection map provides convincing results :
• High correlation score with sample concentration (≥ 0.9)
• Stable detection map with respect to the dimension of the subspace

• Detector sensitivity seems promising as it detects particles in samples with a 200 ppm 
concentration (repeatable on three replica)

• Pending question: detection limit/sensitivity of the detector at the pixel scale: difficult as we don’t 
have any reference value at the pixel level…
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Peanut allergy
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Additional slides: NMF components
NMF components obtained on wheat flour

• First component is clearly similar to the average spectrum 
of wheat flour

• NMF is not a nested method like PCA: components shape 
changes according to the number of requested 
components

• NMF components are constrained to be positive

NMF with n=3



Additional slide: homogeneity assumption

• Clusters of detected particles are detected on the maps.

• The assumption that mixtures are homogeneous is clearly 
wrong

• Very difficult to mix small particles (electrostatic effects 
that counteract blending when particle size is ≤ 100 µm)

Clusters of particles are detected



Additional slide : detection linearity

1 pixel

Both count for 1 
detected pixel but 

they have ≠ 
concentration levels

1 pixel

Several reasons why the linearity between number 
of detected pixels and sample concentration can 
be broken:

• We do not perform quantification at the pixel 
level

• Intimate powder mixing creates nonlinear 
spectral mixing

• A white pixel (detection) only means the target 
spectral abundance has crossed the threshold?



Additional slide: geometric interpretation

!" (ℝ%)

!' (ℝ()

!

• Assume a spectrum lies in ℝ) (*+, *-, *.) for simplicity.
• Assume the background (!') and the target (!") spaces lie 

in a 1 dimensional subspace of ℝ)

• The LMM subspace for modelling is ! = !" ∪ !'
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Here comes a new challenger

Additional slide: geometric interpretation

• ) is a test spectrum



Additional slide: geometric interpretation

• ! is a test spectrum

• ! is projected onto "# according to $%: ' = "#)# + +$%
and the residual can be calculated

", (ℝ/)

"# (ℝ1)

"+$%



Additional slide: geometric interpretation

• ! is a test spectrum

• ! is projected onto "# according to $%: ! = "#(# + *$%
and the residual can be calculated

• ! is projected onto " according to $+: ! = ",(, + "#(# +
*$+and the residual can be calculated

-. (ℝ1)

-3 (ℝ4)

-
56+
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!
PS

BS

Additional slide: geometric interpretation

• ) is a test spectrum

• ) is projected onto *b according to H0 and the residual can 
be calculated

• ) is projected onto * according to H1and the residual can 
be calculated

• AMSD ratio is the comparison of PS with BS
• PS à RH1
• BS à RH0 − RH1

• AMSD ratio evaluate vector norm d ) = R34 − R35
R35


