

Subpixel detection of peanut in wheat flour using near infrared hyperspectral imaging

<u>Antoine Laborde¹</u>, Benoît Jaillais², Delphine Jouan-Rimbaud Bouveresse³, Anthony Boulanger¹, Christophe B.Y. Cordella³ ¹GreenTropism, 75116 Paris, France.

²StatSC INRA/ONIRIS, 44322 Nantes, France.

³UMR914 PNCA INRA/AgroParisTech, 75231 Paris, France.

Peanut in wheat flour

• **Peanut allergy** is a **major health concern**:

- High sensitivity for very small dose (a few mg)
- Allergic population on the rise ?
- Widely used in the food industry
- Advisory labelling for food allergen are not a complete solution for allergic people
- Allergen contamination could be detected using **imaging technique** in raw material as wheat flour

From Oqali, A study on allergens occurance in available transformed products on the French marker between 2008 and 2012. ("Etude des allergènes dans les produits transformés disponibles sur le marché français entre 2008 et 2012," Paris, 2015.)

Catégorie d'allergène	Références produit contenant l'allergène considéré		Références produit présentant un étiquetage de précaution pour l'allergène considéré		Références produit sans l'allergène considéré (ni présence ni étiquetage de précaution)	
	Effectif	Pourcentage*	Effectif	Pourcentage*	Effectif	Pourcentage*
LAIT	9222	53%	1935	11%	6152	36%
GLUTEN	7087	41%	1512	9%	8710	50%
OEUF	3759	22%	2496	14%	11054	64%
SOJA	3460	20%	2146	12%	11703	68%
FRUITS A COQUE	1419	8%	3443	20%	12447	72%
ARACHIDE	231	1%	2295	13%	14783	85%
CELERI	1127	7%	1114	6%	15068	87%

Ingrédients: Céréales 61,9% (blé complet 31,8%, farine de blé, semoule de maïs), chocolat en poudre 22,2% (sucre, cacao en poudre), sucre, sirop de glucose, extrait de malt d'orge, huile de palme, émulsifiant: lécithine de tournesol, sel, arômes, vitamines (niacine (PP), acide pantothénique (B5), riboflavine (B2), vitamine B6, thiamine (B1), acide folique (B9), vitamine D) et minéraux (carbonate de calcium, fer).

*May contain milk, peanut and nuts.

References

W. Burks, "Peanut allergy," *Lancet*, vol. 371, no. 9623, pp. 1538–1546, 2008.
E. W. Lusas, "Food uses of peanut protein," *J. Am. Oil Chem. Soc.*, vol. 56, no. 3, pp. 425–430, 1979.
C. Hadley, "Food allergies on the rise?," *EMBO Rep.*, vol. 7, no. 11, pp. 1080–1083, 2006.

Peanut and wheat flour in near infrared

- Peanut allergy is associated with proteins (Ara h 1 -> Ara h 8*)
- Peanut NIR spectral signature is not specific to proteins (influence of fatty acids)
- Peanut flour is defatted and show less NIR pattern
 → more difficult to distinguish from wheat
- Peanut flour and wheat flour pure spectra do not show clear specific spectral patterns -> challenging unmixing problem

Subpixel issue

The camera provides the average spectrum of the pixel field of view (~250 μ m square).

Particle size < 200 μm

One pixel contains several particles

- Each pixel spectrum is a mix of peanut and wheat
- Spatial pattern cannot be used as the mixture is assumed to be homogeneous
- No spectral data with different concentrations of peanut available
- No reference value for individual pixel

Experimental setup

Specim SWIR

- Flour mixtures: from 20% down to 0.02% (200 ppm) of peanut in wheat
- Mass measurement with 0.01 mg precision
- Manually blended flour mixtures
- 3 replica for each sample and pure samples are measured with the camera
- Samples considered to be homogeneous

Correlation score between each pixel spectrum and the mean spectral signature of peanut (target) $\mathbf{r} = \operatorname{corr}(\mathbf{x}, \overline{\mathbf{X}}_{peanut})$

• AMSD is an **algorithm** used for **detection**: the output is **detected** (target) or **not detected** (background)

- AMSD is an **algorithm** used for **detection**: the output is **detected** (target) or **not detected** (background)
- AMSD is used to assess the presence of peanut in each pixel

- AMSD is an **algorithm** used for **detection**: the output is **detected** (target) or **not detected** (background)
- AMSD is used to assess the presence of peanut in each pixel

Each pixel is assumed to be a **linear combination** of endmembers (s_k) according to some proportions (a_k) . r holds for the residuals of the model.

D. Manolakis, C. Siracusa, and G. Shaw, "Hyperspectral subpixel target detection using the linear mixing model," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 7, pp. 1392–1409, 2001.

- AMSD approach is performed in 3 steps:
 - 1. Construction of the target (S_t) and the background (S_b) subspaces
 - 2. Design of the detector:
 - n stands for the target and background **subspace dimensionality**
 - θ stands for the **detection threshold**
 - **3.** Application on test images

- AMSD approach is performed in 3 steps:
 - 1. Construction of the target (S_b) and the background (S_t) subspaces

How to obtain the subspaces S_b and S_t ?

- Pure peanut flour and pure wheat flour images are acquired to measure the **sample variability**
- S_b models the variability of wheat flour
- S_t models the variability of **peanut flour**

How to obtain the subspaces S_b and S_t ?

How to obtain the subspaces S_b and S_t ?

- AMSD approach is performed in 3 steps:
 - 1. Construction of the target (S_b) and the background (S_t) subspaces
 - 2. Design of the detector:
 - n stands for the target and background **subspace dimensionality**
 - θ stands for the **detection threshold**

How to choose the subspace dimension n ?

How to choose the subspace dimension n ?

• With high **n**, the variability of pure samples is taken into account

How to choose the subspace dimension n ?

- With high **n**, the variability of pure samples is taken into account
- High n may lead to detector overfitting: the measurement noise is confused with sample variability
- A tradeoff must be found by checking the detector histograms and detection map

Hyperspectral images

Decompose \mathbf{x} on $\mathbf{S}_{\mathbf{b}}$ using Non Negative Least Square (NNLS) to find abundance vector

Hyperspectral images

Reconstruct an estimation of x using \boldsymbol{S}_b and \boldsymbol{a}_b

Hyperspectral images

Reconstruct an estimation of \mathbf{x} using $\mathbf{S}_{\mathbf{b}}$ and $\mathbf{a}_{\mathbf{b}}$

 $\mathbf{R}_{\mathrm{H}_{1}} = \mathbf{x} - \hat{\mathbf{x}}$

• The AMSD gives a metric for the detection which is a relative comparison of residuals between both models

• The AMSD gives a metric for the detection which is a relative comparison of residuals between both models

• The AMSD gives a metric for the detection which is a relative comparison of residuals between both models

AMSD algorithm (complete)

• The AMSD gives a metric for the detection which is a relative comparison of residuals between both models

AMSD algorithm (complete)

• For pure images, true detection results are known → can be used to find the threshold for the detector.

For pure images, true detection results are known → can be used to find the threshold for the detector

 P_D : detection probability P_{FA} : false alarm probability

Threshold dependence on subspace dimensionality

- The histogram of **d** depends on the choice of **n**
- Histograms below show that n = 2 is a better choice than n = 1 because the detection is not optimal on reference images

- AMSD approach is performed in 3 steps:
 - 1. Construction of the target (S_b) and the background (S_t) subspaces
 - 2. Design of the detector:
 - *n* stands for the target and background **subspace dimensionality**
 - θ stands for the **detection threshold**
 - 3. Application on test images

...

AMSD application on test images – influence of n

• AMSD with n = 2 tends to provide more detected pixels than AMSD with n = 1 (underfitting) and n = 3 (overfitting ?)

Conclusions and perspectives

- AMSD provides an appropriate metric for subpixel detection with close spectral endmembers
- Detection map provides **convincing results** :
 - High correlation score with sample concentration (≥ 0.9)
 - Stable detection map with respect to the dimension of the subspace
- Detector sensitivity seems promising as it detects particles in samples with a **200 ppm concentration** (repeatable on three replica)
- Pending question: **detection limit/sensitivity** of the detector at the **pixel scale**: difficult as we don't have any reference value at the pixel level...

References

Peanut allergy

- W. Burks, "Peanut allergy," Lancet, vol. 371, no. 9623, pp. 1538–1546, 2008.
- E. W. Lusas, "Food uses of peanut protein," J. Am. Oil Chem. Soc., vol. 56, no. 3, pp. 425–430, 1979.
- C. Hadley, "Food allergies on the rise?," EMBO Rep., vol. 7, no. 11, pp. 1080–1083, 2006.
- Oqali, "Etude des allergènes dans les produits transformés disponibles sur le marché français entre 2008 et 2012," Paris, 2015.

Peanut detection

- P. Mishra, A. Herrero-Langreo, P. Barreiro, and J. M. Roger, "Detection and quantification of peanut traces in wheat flour by near infrared hyperspectral imaging spectroscopy using principal-component analysis," J. Near Infrared Spectrosc., vol. 23, no. 1, pp. 15–22, 2015.
- P. Mishra, C. B. Y. Cordella, D. N. Rutledge, P. Barreiro, J. M. Roger, and B. Diezma, "Application of independent components analysis with the JADE algorithm and NIR hyperspectral imaging for revealing food adulteration," J. Food Eng., vol. 168, pp. 7–15, 2016.

AMSD

• D. Manolakis, C. Siracusa, and G. Shaw, "Hyperspectral subpixel target detection using the linear mixing model," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 7, pp. 1392–1409, 2001.

Thank your for your attention

Antoine Laborde¹, Benoît Jaillais², Delphine Jouan-Rimbaud Bouveresse³, Anthony Boulanger¹, Christophe B.Y. Cordella³ ¹Greentropism, 75116 Paris, France. ²StatSC INRA/ONIRIS, 44322 Nantes, France. ³UMR914 PNCA INRA/AgroParisTech, 75231 Paris, France.

Contact: antoine.laborde@greentropism.com

Additional slides: NMF components

NMF components obtained on wheat flour

- First component is clearly similar to the average spectrum of wheat flour
- NMF is not a nested method like PCA: components shape changes according to the number of requested components
- NMF components are constrained to be positive

Additional slide: homogeneity assumption

Clusters of particles are detected

- Clusters of detected particles are detected on the maps.
- The assumption that mixtures are homogeneous is clearly wrong
- Very difficult to mix small particles (electrostatic effects that counteract blending when particle size is $\leq 100 \ \mu m$)

Additional slide : detection linearity

Both count for 1

detected pixel but

they have ≠

concentration levels

Several reasons why the linearity between number of detected pixels and sample concentration can be broken:

- We do not perform quantification at the pixel level
- Intimate powder mixing creates nonlinear spectral mixing
- A white pixel (detection) only means the target spectral abundance has crossed the threshold

- Assume a spectrum lies in \mathbb{R}^3 $(\lambda_1, \lambda_2, \lambda_3)$ for simplicity.
- Assume the background (S_b) and the target (S_t) spaces lie in a 1 dimensional subspace of \mathbb{R}^3
- The LMM subspace for modelling is $S = S_t \cup S_b$

• *x* is a test spectrum

- *x* is a test spectrum
- x is projected onto S_b according to H_0 : $x = S_b a_b + R_{H_0}$ and the residual can be calculated

- **x** is a test spectrum
- **x** is projected onto S_b according to $H_0: x = S_b a_b + R_{H_0}$ and the residual can be calculated
- x is projected onto S according to $H_1: x = S_t a_t + S_b a_b + R_{H_1}$ and the residual can be calculated

- **x** is a test spectrum
- \boldsymbol{x} is projected onto \boldsymbol{S}_b according to \boldsymbol{H}_0 and the residual can be calculated
- \boldsymbol{x} is projected onto \boldsymbol{S} according to H_1 and the residual can be calculated
- AMSD ratio is the comparison of PS with BS
 - PS \rightarrow R_{H1}
 - BS \rightarrow R_{H0} R_{H1}
- AMSD ratio evaluate vector norm $d(\mathbf{x}) = \frac{\|\mathbf{R}_{\mathbf{H}_0} \mathbf{R}_{\mathbf{H}_1}\|}{\|\mathbf{p}\|}$