

Institut Polytechnique UniLaSalle (site de Beauvais)

Motivations

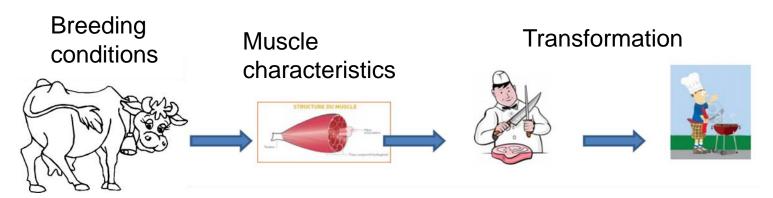
- Samples and analyses
- Multispectral images acquisition
- Artificial Neural Networks (ANN)
- Results

Conclusions

Motivations

Samples and analyses
 Multispectral images acquisition
 Artificial Neural Networks (ANN)

- Results
- Conclusions


Motivations

Beef tenderness...

A tender meat = a meat easy to chew

- Organoleptic characteristic: the most important for consumer, should be constant
- Will influence his decision to repurchase

Several factors of variation

Motivations

It is important to predict tenderness for beef sector and consumer

Easy, fast, non-destructive method, usable online

- Classification of carcasses or meat payment of meat to the producer according to quality
- Authentication of meat

Motivations

Samples and analyses

Multispectral images acquisition

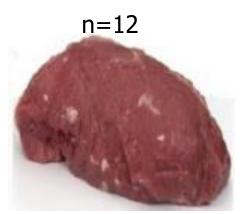
- Artificial Neural Networks (ANN)
- Results

Conclusions

Samples and analyses

Three breeds , two muscles

Limousine



Aberdeen Angus

Blonde d'Aquitaine

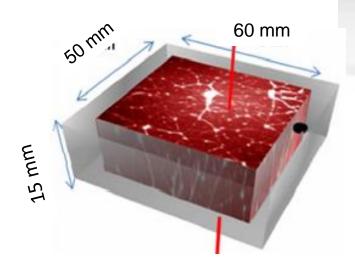
Longissimus thoracis (noix d'entrecôte)

Tenderness AA<Lim<BA; SM<LT n=14

Semimembranosus (tende de tranche)

Samples and analyses

- Tenderness measurements
 Cooked meat at 55°C, aged at 4°C, 14 days
- Two methods:
- Mechanical measurements: shear force with Warner-Bratzler instrument
- Sensory analyses by expert panel: overall liking, beef flavour, total tenderness, residues after chewing
- 4 sensory attributes and 1 mechanical attribute

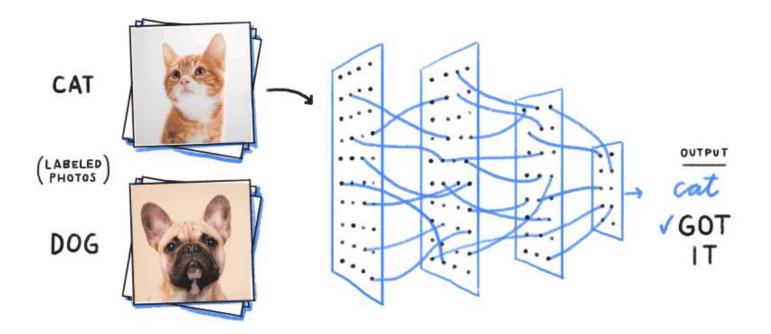

Motivations
 Samples and analyses
 Multispectral images acquisition
 Artificial Neural Networks (ANN)
 Results
 Conclusions

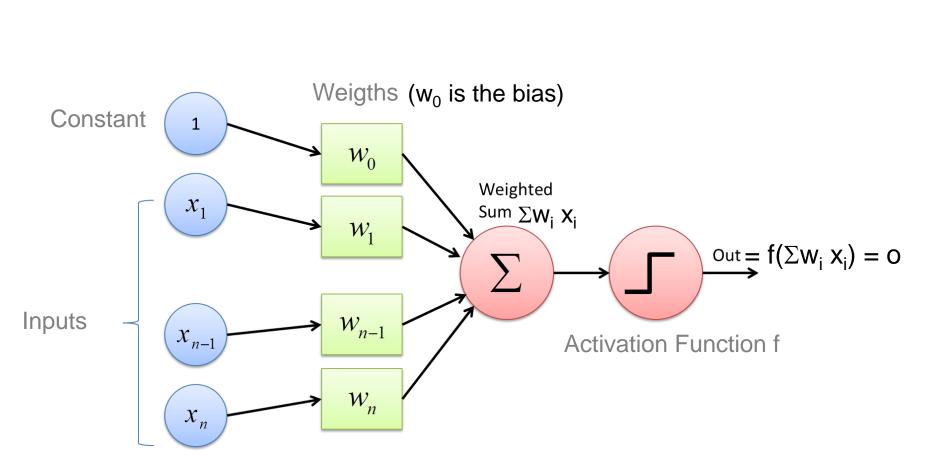
Multispectral images acquisition

- Muscle size: 50 mm x 60 mm x 15 mm
- Muscles taken parallel to the direction of muscle fibres
- Samples frozen in pure ethanol at -20°C, then kept at -20°C
- Samples thawing at 5°C (12h)
- Temperature of MSI acquisition : 25°C

Multispectral images acquisition

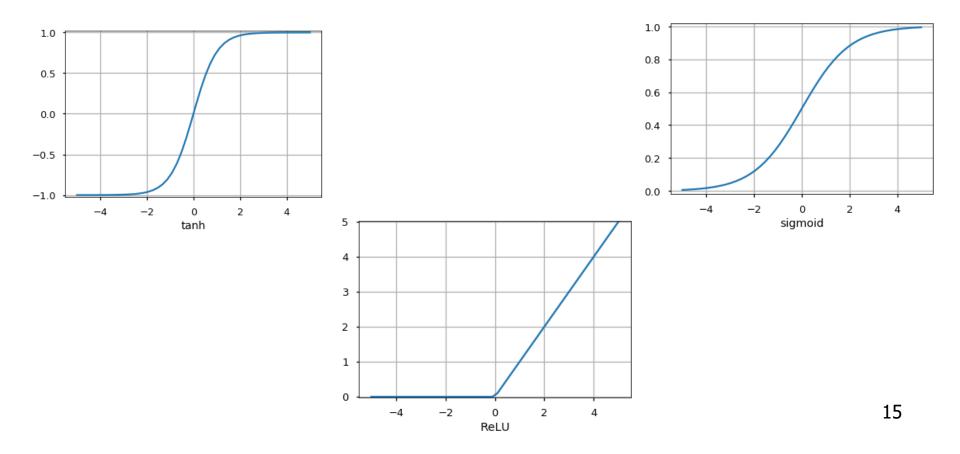
- Camera: Scorpion SCOR-20SOM
- Spatial resolution :1200 x 1200 pixels
- 19 LEDs (UV, Visible and NIR)
- At least 4 images recorder on 2 parts the muscle
- 189 images measured


Adapted from El Jabri et al. (2010)


Motivations
 Samples and analyses
 Multispectral images acquisition
 Artificial Neural Networks (ANN)
 Results
 Conclusions

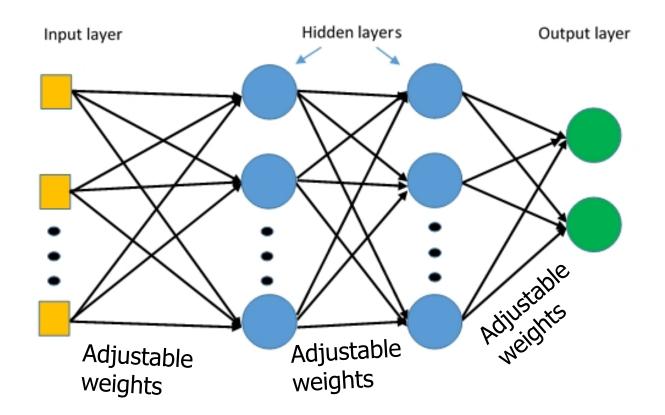
Perceptron, Neural Networks

Perceptron = single layer neural network Multi-layer perceptron = neural networks


How does Perceptron work?

The perceptron consists of 4 parts

Activation functions



The activation functions are used to map the input between the required values like (0, 1) or (-1, 1).

Types of Layers

Back-Propagation

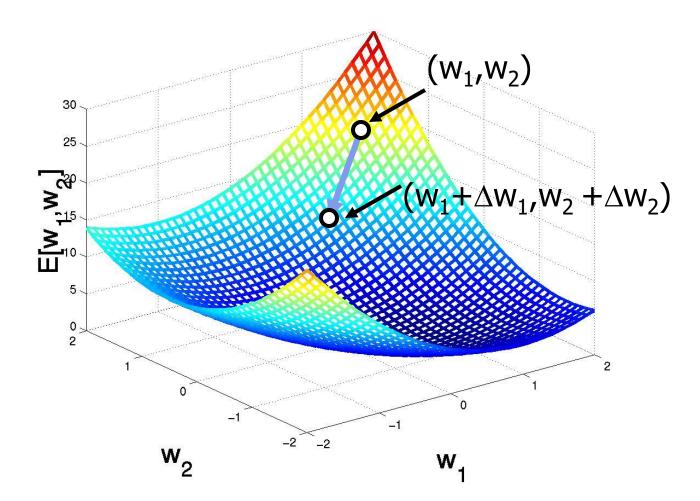
- A training procedure which allows multi-layer feedforward Neural Networks to be trained;
- Can theoretically perform "any" input-output mapping;
- Can learn to solve linearly inseparable problems.

Parameters stored in **w** are optimised by minimising an error function, called perceptron criterion:

- Consider linear unit without threshold f(s) = s and continuous output o (not just -1,1)
 - $o = f(w_0 + w_1 x_1 + ... + w_n x_n) = w_0 + w_1 x_1 + ... + w_n x_n$
- Train the w_i's such that they minimize the squared error

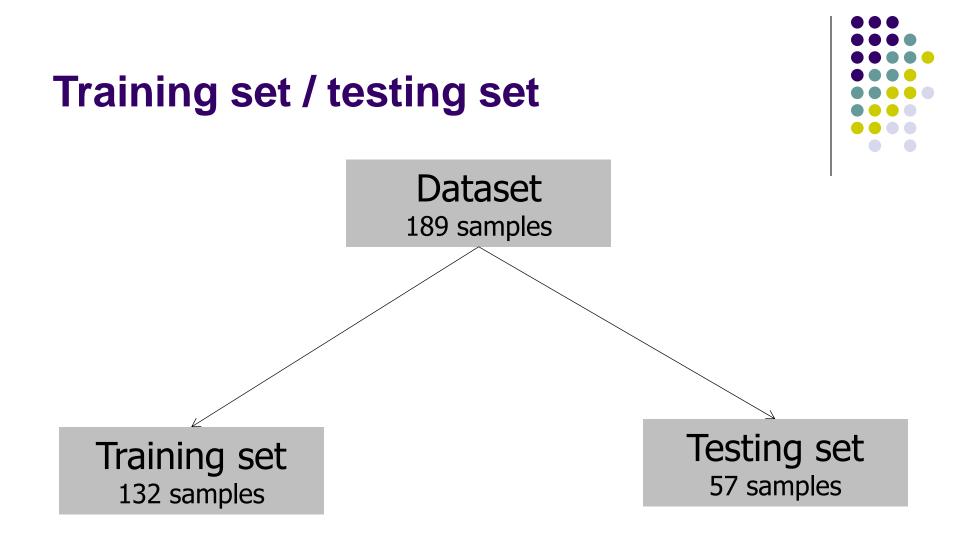
•
$$E[w_0, w_1, ..., w_n] = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

where D is the set of training examples


 Each training example is a pair of the form (x_d, t_d), x_d the dth vector of input values, t_d target output value

- Initialize each w_i to some small random value
- Until the termination condition is met, Do
 - Initialize each weigth increment Δw_i to zero
 - For each < x, t > in D, Do
 - Input the instance (x) to the linear unit and compute the output o
 - For each linear unit weight w_i, Do
 - $\Delta w_i = \Delta w_i + \eta$ (t-o) x_i , η learning rate (e.g 0.1)
 - For each linear unit weight w_i, Do
 - $W_i = W_i + \Delta W_i$

Parameter setting



- Number of layers
- Number of neurons
 - too many neurons, require more training time
- Learning rate
 - \bullet from experience, value should be small ~ 0.1
- Number of training epochs
- Momentum term

Motivations
 Samples and analyses
 Multispectral images acquisition
 Artificial Neural Networks (ANN)
 Results

Conclusions

Testing set : Confusion matrix

Shear force – NER = 80,7%

		Predicted class		
		Class 1	Class 2	Class 3
	Class 1	17	2	2
True class	Class 2	1	14	3
	Class 3	3	0	15

Testing set : Confusion matrix

Overall liking - NER = 84,2%

		Predicted class		
		Class 1	Class 2	Class 3
	Class 1	15	2	3
True class	Class 2	2	20	0
	Class 3	2	0	13

Testing set : Confusion matrix

Beef flavor - NER = 82,4%

		Predicted class		
		Class 1	Class 2	Class 3
	Class 1	14	2	3
True class	Class 2	0	17	0
	Class 3	2	1	16

Total tenderness – NER = 86, 7%

		Predicted class		
		Class 1	Class 2	Class 3
	Class 1	20	2	1
True class	Class 2	1	17	2
	Class 3	2	3	13

Motivations

- Samples and analyses
- Multispectral images acquisition
- Artificial Neural Networks (ANN)
- Results
- Conclusions

Conclusions

A Multilayer perceptron classifier incorporating MSI was designed for rapid prediction of mechanical and sensory attributes of beef meat.

Good prediction performance (81% - 86%) were achieved with limited number of learning samples (132) and poor spectral resolution.

The prediction performances will be improved by using larger amount of training samples

The classifier can be trained to predict other meat characteristics

Thanks