USE OF SPARSE METHODS INCOSMETICS
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Curse of Dimensionality

Let f a smooth function, a natural way to estimitg) is by some average of
they associated to the in the vicinity ofx.

The most simple version of this idea is the k-nearest neighbours estimator
using a local average of the data.

Training instance

New example
" Local linear 1 to classify

regression resuit
1t
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Curse of Dimensionality

» Unfortunately, when the number of independent variables p increases,
the notion of « nearest points » vanisnes.

Let xy, ..., X, p i.i. d. descriptive variables which follow a uniform
distribution on [0,1] and y € R a response variable.

In order to fill the hypercube [0,1] i.e. to haveat least one point at a
distancelessthan 1 from x, we need at least:

p/2
n> (i) / p7IT observations.

271e

This number of pointgrows more than exponentially fast with p

P 20 30 50 100 200
N 39 45630 5.7*18 42*10%° larger than the number of estimated
particules in the observable universe
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Curse of Dimensionality

Forp=10, in order to capturg0 %
of the data one needs to coved %
of the range of each dimension

» The concept of « local » neighborhood becomes irrelevant.
» Any estimator based on local averaging will fail with suchada

The volume V(r) of a p-dimensional
o sphere of radius goes to zero with
p and isconcentrated in its crust.
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Curse of Dimensionality

Accumulation of small fluctuations in many different directions can
produce a large global fluctuation (increasing variability in the estimations

Multicollinearity issues (incoherent and unstable models)
Empirical covariance not reliable in high-dimensional settings
Distance measures lose their effectiveness to measure disgynilar

. . . ] d Qs
highly dimensional spacedim,,_, m‘;x R — 0

min

Need of interpretable model for knowledge
Computational complexity.

False discovery.
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Circumvent the Curse of Dimensionality

The high dimensionality of the data that seems at first to be a blessi

actually a major issue for the statistical analysEse situation may appear
hopeless.

Fortunately, high dimensional data are often much more low dimension:
that they seem to be. Usually they are not uniformely spread ;iR rather
concentrated around smalllow-dimensional structures. This is due to the
relativelysmall complexity of the system producing the data.

Ex: biological data are the outcome of a biological system which is stro
regulated and whose regulation network has a relatively small complexity.
6



Circumvent the Curse of Dimensionality

When the low-dimensional structures are known, we are back to so
classical «low-dimensional statistics». The major issue with highedsional

data is that thesetructures are usually unknown and the main task is to
identify them.

Importance of bringing information a priorrégularity) to reduce the size of

the space. Deep neural networks use a priori information through the net
structure.

Beyond the importance ofregularization for reliable predictions,
spar sity/par cimony is important to have amter pretable model for knowledge.

>
B
—
e
— S
=g
-
-
-
. -
=
-
-
= =
e
= -
-
-
-
. -
-
-
-
= &
e
= >




BRADLEY EFRON
TREVOR HASTIE

COMPUTER\
STATISTICAL G
INFERENCE S\

Bradley EFRON

« Maximum likelihood estimation has shown itself to be
an inadequate and dangerous tooh many twenty-first
century applications.

Unbiasednesgan be an unaffordable luxury when there
are hundred or thousands of parameters to estimate at the
sametime. »
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Regularization

Need for regularization to obtain a stable predictiveodel

- Dimension reduction PCR/PLSregression
- Penalization(linear and generalized linear models)
- L1 (Lasso, group Lasso, sparse group Lasso)
- L2 (Ridge)
- L1& L2 (Elastic net)
- non-convex penalties
- Dimension reduction and Penalization
- sparse PCR, sparse PLSregression, sparse group PLS

- gparse PCA, sparse CCA, sparse GCCA
- Clustering

- Sparse k-means
- sparse hierarchical clustering
- sparse bi-clustering
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Sparse PCA

Principal components are interpreted by examining the Ioad{Ngg}srj=1
order to determine which of the variables plasignificant role.

With a large number of variables it is often desirable to select a smal
subset of relevant variables. Needs dpar se loadings.

From atheoretical point of view, when p>>N,PCA is known to break
down very badly in that the eigenvectors of the sample covariance could
far from the population eigenvectors.

Imposingspar sity on the PC makes tharoblem well-posed and is
therefore essential.

Sparse PCA for unsupervised variables selection



Sparse PCA

Singular Value Decomposition of X (SVD):

X=UDV' withU'u=VvV'vVv =1

|+...+\//1T H I
X u

¥

SPC (based on PMD algorithm)

maxy, , U Xv s.t. |lvll; <c, ul3 <1, vi3 <1

Witten, Tibshirani, and Hastie (2009) 'A penalized matrix decomposition, with applications to 11
sparse canonical correlation analysis and principal components', Biostatistics.
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Penalized M atrix decomposition
(Witten, Tibshirani, Hastie 2009)

PMD algorithm :
1/Imtialize v to have L, norm 1

2 / Tterate until convergence

a) u<argmaxuXv st. ) |u|<c,. u”if_:l

I

b) v« argmaxuXv st. Z‘vf‘{_ic . sz{_:I

— Biconvex algorithm
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Solution for the SPC algorithm

let S.(a)=sign(a)|a|l — ¢).,

1: initializev, ||v||,=1
2: iterate until convergence
Xv

IXvll2
SSZ(X,'LL)
V &

IS5, X'l

individuals

a) U

b)

where 6,smallest value such that ||[v||; < ¢,
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@PLOS ‘ ONE

RESEARCHARTICLE
Craniofacial similarity analysis through sparse
principal component analysis

Junli Zhao'*2, Fuqing Duan®*®*, Zhenkuan Pan®®*, Zhongke Wu**, Jinhua Li’,
Qinggiong Deng®*, Xiaona Li', Mingquan Zhou®*

Fig 3. Reflected region by PCA principal component.

Fig 4. Reflected region by SPCA sparse principal component.

Each PCA component reflects the whole or a larger region efctianiofacial, whereas each sparse
SPCA component reflects only a local part of the craniofasiach as the mouth or nose. Thus, eac
sparse SPCA principal component reflects detailed areas. 15
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“ﬁ Sparse PCA: Metabolomics
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Spar se Clustering

(Witten, Tibshirani, 2010)

We wish to cluster the observations and suspect that the true
underlying clusters differ only with respect to some features.

This results in more accurate identification of the groups and more
interpretable that standard clustering.

Witten and Tibshirani, A framework for feature selection in clustering, J Am Stat
Assoc. 2010 Jun 1; 105(490): 713-726.
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Sparse K-meansclustering

n

14 K
maxc, . cow Z W; 1/7’12 Z diirj— Z 1/ny Z d;i’
Jj=1

i=1i'=1 k=1 i,iEC),

wlly < s, llwll3 < 1w =0

Witten and Tibshirani, A framework for feature selection in clustering, J Am Stat Assoc. 2010
Jun 1; 105(490): 713-726.
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Sparse K-meansclustering

1: Initialize w as wy, ...,w,, = 1/Vp
2: Iterate until convergence

a: Holding w fixed
p

K
) K- means on matrix
ming,  c. Zl/nk E E wid; i1 i D widyr
k=1

i,ireCy j=1

b: Holding Cy, ..., Ci fixed

S(a,, D)
IS(a+, D)l

3 S i S Y

i=1i'=1 L,IrECK

w =

A= 0 if that results in ||w]||; < s,else A > 0,so that||lw|; = s
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Sparse K-means clustering
sparse k-means
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Sparse Hierarchical Clustering

Dissimilarity matrix for the n observations Dissimilarity matrix is a sum of dissimilarity matrices over

the features

Let D € R™*P with column ] consists of the elements
{d;;;}.. unfolded into a vector

Lu
« Sparse PCAon D max, ,{u'Dw}
withu € R" s. t. lullz < L Iwlls < 1,]wll; <s, w; = 0Vj
 Rewrite uas an xn matrix U
« Perform a hierarchical clustering on U

Daniela Witten , A penalized matrix decomposition, with application to sparse
hierarchical clustering, PhD thesis 2009; Department of Statistics Stanford University

>
S
—
=
-
=
-
-
-
. B
-
. -
-
-
=
= >
-
-
-
-
-
=
-
= &
=
= =




Sparse Hierarchical Clustering

1: Standard Clustering 5: Weights 3: Sparse Clustering
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_ Daniela Witten , A penalized matrix decomposition, with application to sparse
a» hierarchical clustering, PhD thesis 2009; Department of Satistics Sanford University .,
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Bi-clustering

Bi-clusteringis of particular interest in situations when both rows and colu
of the data matrix present certain scientific meaning and may cookasters,
such as for example gene expression data.

The subgroups of samples may be similar on a subsets of features and
versa: the subgoups of features may behave similarly on a subsets of samp

samples

H11

L UNEID I IDNCIRITHRIIWIH

r i0C, jOD,

X=

features

Kean Ming Tan & Daniela M. Witten (2014) Sparse Biclustering of Transposable Data, Journal of 23
Computational and Graphical Statistics, 23:4, 985-1008
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sparseBC A=0

Spar se bi-clustering

X0+noise K-means

PYeRRARAIYRNBBRABBAE R CUoORNRBIYBERBEREEBEY

sparseBC A=50




Spar se bi-clustering

sparseBC A=50

CUQPRNRARTYYRNBEBREBERRS

CPouRRRIYEBBERELEBERBg SR
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Thenks for gour attention

Why make sparse when we can do complicated 2!
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